北师大版数学教案优质6篇

时间:
Mute
分享
下载本文

设计合理的教案能够让学生在学习中建立知识的系统性和连贯性,优秀的教案能够激发学生的学习兴趣,促进他们的积极参与,以下是92范文网小编精心为您推荐的北师大版数学教案优质6篇,供大家参考。

北师大版数学教案优质6篇

北师大版数学教案篇1

一、情景引入

1、说说我们已经学习了有关小数的知识。小数中最重要的一个符号是什么?(板书:小数点)

2、板书课题:小数点搬家

3、看了课题你有什么想法吗?

二、自主探究

1、自学课本内容。

2、分析探讨,找出规律

3、小数点向哪边搬家的?

4、请同学们在组内讨论:

(1)小数点是怎样移动的?

(2)小数点移动后这个数发生了什么变化?

(3)小组汇报 。

5、谁来说说小数点向右搬家的变化?为什么后面写着省略号?你能再填一句吗?

6、现在我们知道了小数点右移,原来的数就会扩大(板书:右移 扩大),小数点左移,原来的数就会缩小(板书:(左移缩小)。

三、巩固应用

1、说说小数点搬家会怎样?

2、小数点这样跳来跳去,严重的影响了山羊的生意,我们能把它放在一个合适的地方吗?(结合生活实际,数学与生活相结合)

四、全课总结

1、 刚才小数点搬家,大家探索出了小数点移动引起数的大小的变化规律,小数点真是个神奇的小家伙,我们在学习中应如何应用它呢?

2、下面的数与0.285比较,扩大到原来的几倍或缩小到原来的几分之几?

北师大版数学教案篇2

教学内容:国土面积

教学目标:

1.通过教学活动,认识有些数据改写单位的必要性。

2.掌握数据改写的方法。

3.引导学生关注较大数据的实际意义。

教学重点:体会某些数据改写单位的必要性,能用万、亿为单位表示大数。

教学难点:

教学过程:

一、创设情境,解决问题。

1.教学时师可以出示一组改写的实例,让学生比较、讨论同样的数据为什么要用不同的方法表示?以让学生体验到数据改写的必要性,体会数据单位的改写是为了数据记录的方便。

2.出示一幅中国地图,并逐步引出一些各省市国土的面积,让学生读一读。

(1)将上面的数按从小到大的`顺序排列。

(2)如果要记录方便,这些数据可以怎样进行改写?

(3)可能学生会改写成以“百”、“千”、或“万”作单位,只要学生能改写得正确,教师都应充分地肯定。

(4)将一些改写成以“万”作单位的数据放在一起,让学生观察这些数据改写中的基本特点,从中发现改写的基本方法。

3.对改写成以“亿”作单位的数,也可以让学生自己在改写中逐步发现改写的方法。

二、实践练习。

第10页“练一练”中第1题,数据单位的改写是实际生活中记录方便的需要,可以多选择一些实际生活中的实例,而不要将数据单位的改写成为单纯的为改写而改写的局面。

练习本题时,先请学生说一说我国西部各省市的情况以及它们的地理位置,然后出示具体的各地区土地面积,在学生读一读的基础上再请学生改写成以“万”作单位。收集一些西部地区的其他信息,以供学生间互相进行改写。

第2题,在练习“海洋资源”时,先让学生了解一些海洋的知识,特别是我国海洋的区域等。接着出示有关的数据,让学生读一读。然后讨论这些数据如何进行改写?在此基础上,学生会体会到这些数据改写成以“亿”作单位比较方便。

板书设计:

大数的改写

为了读数、写数方便,有时需要把整万、整亿数

写成以“万”或“亿”为单位的数。

9600000=960万

10000000000=100亿

北师大版数学教案篇3

教材内容:

北师大版小学数学四年级下册41——42页内容

教学目标:

1.通过具体情境和实际操作,初步了解小数乘法的意义

2.结合小数乘法的意义,能计算出简单的小数与整数相乘的得数。

3.通过探究小数乘整数的计算方法一系列活动,培养学生的类推迁移、转化方法的数学思维。

教具准备:

课件

学具准备

格子图、色彩笔

一、激活旧知,引入新课。

(一)复习小数的意义

同学们,前些日子,我们已经学习了小数的有关知识。你们还记得吗?(记得)。好,老师就考考你们。有信心接受挑战吗?(有)

0.3它表示什么?

生:0.3表示十分之三,即把一个整体平均分成十份,其中的3份就是0.3.

师:如果我在0.3后面加上个“元”字,那么这个大正方形表示什么呢?(表示1元),0.3元又是多少钱呢?(3角)如果加上“米”字,这个大正方形双表示什么呢?

那0.25它表示什么呢?你会用你手中的百格图表示出来吗?请同学们动手试一试。

生:表示把一个整体平均分成100份,其中的25份,就是0.25。

师:恭喜你们,挑战成功!但是要摘取数学王国的皇冠,我们还要继续努力学习。在探究新知识前,我要带你们去个地方……

(二)复习整数乘法的意义,引出小数乘法的问题。

(课件出示情境:文具店,单价是整元的文具)。

板书:文具店

结合文具店柜台上各种文具的单价,提出数学问题。

1、提问题与列式。

师:熊妈妈是个热心助学人士,她说你们是第一次到她的文具店,决定给你们的优惠,你们发现文具的单价有了什么变化?(生:以前的价钱都是整数,现在的价钱都是小数。)

师:现在买3块橡皮又需要多少钱呢?怎么列式解答呀?

二、探究算法

师:请同学们思考一下,与前面的乘法算式对比,它们有什么不同?

生:以前是整数乘整数,现在是小数乘整数。

师:对,现在是小数乘整数。那么,怎样求出小数乘整数的结果呢?这节课我们就一起来探究小数乘整数,也就是小数乘法(一)。(板书课题)

(一)意义

下面提出以0.3×3这个算式为例来进行研究。

0.3×3它表示的什么意义?

(二)交流算法。

1、引导探究

学生用自己的办法算出0.3×3是多少元?要求每个同学先独立思考,自己算,然后进行小组讨论,交流算法。

2、全班交流.

如:

(1)连加。你是怎么加的?为什么可以这样算?

(2)转化。0.3元看做3角,然后3角×3等于9角,9角等于0.9元。

(3)画格子图。学生先画,然后投影学生作品,让学生说一说是怎么画。

用一个正方形表示1元。把它平均分成10份,3份就是0.3元,也就是一块橡皮的价钱,买3个就是3个0.3元,从图中可知,合起来就是0.9元。

(三)小结。

师:刚才通过学习交流,同学们找到了连加的、换算单位转化成整数来计算的、借助方格图来进行计算的等方法。不管用什么方法,都算出结果是:买3块橡皮需要0.9元,也就是3个0.3等于0.9。(师板书完整,补“0.9元”并写答语)

师:下面我们来对上面各种方法作一个分析和比较,它们各有什么特点?(生说想法)

1、利用整数乘法意义(连加)

2、化为整数乘法(转化)

3、画图(数形结合)

三、解决实际问题。

(一)做一做。课本p42“试一试”1、2题。

师:用你喜欢的方法来完成课本p42“试一试”1、2题。独立完成汇报结果,交流算法)

(二)计算4×0.3。小组活动,交流算法。

(三)补充练习。

1.寻找小数是两位数的计算方法。

一棵竹子一时约生长0.03米,三时约长了多少米?

师:请每个同学独立思考和解答。在此基础上,全班交流.(生列式:0.03×3=0.09(米))你是怎么算的?

如果学生说涂格子,就问:假如用一个正方形表示1米的话,0.03米该怎么表示?0.03×3又表示什么?

师:你能用涂色的方法表示出来吗?(生动手涂色)投影学生作品并点评。

(四)深化性练习(每个学生独立完成)

1.填一填。 0.1+0.1+0.1+0.1=( )×( )=( )

0.02+0.02+0.02=( )×( )=( )

( )×( )=( )+( )+( )+( ) 2.(课本42页的涂一涂、填一填)

3.“知识拓展”(机动性练习)

小新爸爸去菜市场买菜,他买了三条鱼,每条鱼是3.5元,那么他花了多少钱?

四、总结反思,畅谈全课收获。

师:通过这节课的学习交流,你有什么收获?

板书设计:

文具店

——小数乘法(一)

买3块橡皮需要多少钱?

优惠前:优惠后:

1×3=3(元)0.3×3=

表示3个1相加的和是多少?表示3个0.3相加的和是多少?

答:买三块橡皮需要3元。方法一:连加0.3+0.3+0.3=0.9(元)

0.3×3=0.9(元)

方法二:转化0.3元=3角

3×3=9角9角=0.9元

北师大版数学教案篇4

教学内容:

教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

教学目标:

1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

重点难点:

掌握圆柱体积公式的推导过程。

教学资源:

ppt课件 圆柱等分模型

教学过程:

一、联系旧知,设疑激趣,导入新课。

1.呈现例4中长方体、正方体和圆柱的直观图。

2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?

启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?

3.引入:我们的'猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

二、动手操作,探索新知,教学例4

1.观察比较

引导学生观察例4的三个立体,提问

⑴这三个立体的底面积和高都相等,它们的体积有什么关系?

⑵长方体和正方体的体积一定相等吗?为什么?

⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

2.实验操作

⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。

提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。

⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

操作教具,让学生观察。

引导想像:如果把底面平均分的份数越来越多,结果会怎么样?

演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。

3.推出公式

⑴提问:拼成的长方体与原来的圆柱有什么关系?

指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

⑵想一想:怎样求圆柱的体积?为什么?

根据学生的回答小结并板书圆柱的体积公式

圆柱的体积=底面积高

⑶引导用字母公式表示圆柱的体积公式:v=sh

长方体的体积 = 底面积 高

圆柱的体积 = 底面积 高

用字母表示计算公式v= sh

三、分层练习,发散思维,教学试一试

⑴让学生列式解答后交流算法。

⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

(s和h,r和h,d和h,c和h)

四、巩固拓展练习

1.做练一练第1题。

⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

⑵各自练习,并指名板演。

⑶对照板演,说说计算过程。

2.做练一练第2题。

已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。

五、小结

这节课我们学习了什么?有哪些收获?还有什么疑问?

六、作业

练习三第1~3题。

北师大版数学教案篇5

教学目标:

1、低层目标:让每个学生都知道什么样的图形是对称图形,并能找出它的一条对称轴。

2、高层目标:使学生能根据不同的对称图形找出不同的对称轴,并会设计制作对称图形。

3、发展目标:通过学习,发展学生的空间观念,培养学生的观察能力、动手操作能力以及欣赏数学美的意识。

教学重难点:

能准确判断对称图形,会找对称轴。

教学准备:

课件、对称图片、彩纸、剪刀。

教学过程:

一、情境引入

师:刚才大家已经看了这么多的图片,现在你有什么想说的吗?

学生讲自己的想法。

师:同学们都说出了自己的想法,有些同学认为它们很美,有些认为它们色彩漂亮,还有的同学发现了它们这些图形的两边都是一样的。同学们说得都很好,下面我们就来着重地研究一下,这些图形是不是象xx同学所说得那样,它们的两边都是一样的。(边说边演示课件,让学生感知左右或上下一样)

二、认识轴对称图形

1、认识轴对称图形的特征。

师:刚才我们用肉眼观察到这几个图形的左右两面和上下两面都是一样的,象这样的学习方法我们通常把它叫做观察法。(板书:观察法)

师:那么,除了观察法你还有什么方法可以来证明它们两边肯定一样吗?(根据学生回答板书:如:测量法)当学生提出对折时,就拿出准备好的树叶图片:你看老师就准备了一片树叶,你准备怎样对折?(请学生上来对折)对折后,你们发现怎么了?(重叠了)数学上把这种现象叫完全重合(板书:完全重合)那么完全重合了,也意味着它们左右两边完全一样。通过对折证明了树叶的左右两边一样,我们就把这种方法称为对折法。(板书:对折法)

下面我们就用对折法来看看剩下的图形是不是如我们观察到的两边一模一样。(课件演示)

小结:刚才这些图形我们通过观察法和对折法都发现了它们两边左右两边或上下两面一样,用对折法发现它们对折后能完全重合,像这样的图形就是我们今天要学习的对称图形(板书课题)。

2、认识对称轴。

师:朱老师也剪了几个图形,想让你们猜一猜我剪的是什么,并判断一下它是对称图形吗。(出示一半的:青蛙、飞机、爱心、衣服)

以上图形一个一个出示,当出现衣服时,问学生为什么这个不是对称图形?为什么?

师:那我们就来看这3个对称图形,你们有没有发现它们图中都有一条折痕,你们看这条折痕刚好把这个图形怎么样了?(分成了两边一样的部分)这条折痕是一条什么线?你能给这条重要的线取个名字吗?(学生说)我们数学上把这条折痕称为“对称轴”,人们一般用虚线来画对称轴。(选一个图形画出对称轴),那么象这个图形,它不是对称图形,它能画出对称轴吗?为什么?

三、应用

书上也有一些图形,请大家把书翻到第68页,请小朋友们仔细看看,是不是对称图形,如果是请画出对称轴。

学生做,教师巡视,请学生上来汇报。(当学生对五角星争议时,拿出做好的五角星,让学生上来折一折,教师画出对称轴。)

小结:说明有些图形的对称轴不止一条,它可以是左右对称,上下对称或斜着对称。其它题目要指出画对称轴要画准,两边要一样,这可利用同桌检查的方法。

师:刚才大家都认为“1”不是对称图形,这是为什么呢?0~9这10个数字里你觉得哪几个数字是对称的?(0、8、3)

四、找一找:其实生活中还有很多东西也是对称的?你能举一些吗?(学生举例)

是啊,我们生活中的对称现象真是太多了。

五、巩固深化

你看,朱老师我也带来了一些图形(出示:长方形、正方形、圆),它们是对称图形吗?能找出对称轴吗?下面我们就根据这三个图形来个比赛,比赛的题目是“比比谁的眼力准”,请大家拿出练习纸先看练习的第一题(教师介绍:我们先猜想正方形的对称轴有几条,把数字填进去,再通过实际操作验证是否正确,得出准确的条数,如果你的验证与猜想一致,你就在评价栏中涂上一颗红星,如果比较接近则涂上一颗黄星,如果都错了就不涂,明白了吗?)

师:下面,请每位同学到四人小组组长地方拿一个正方形,先请你看着正方形猜想一下它的对称轴有几条,然后把猜好的数填在表格中,现在你动手折一折或画一画,看看它到底有几条对称轴,学生折完后,请一生上来展示,得出正方形有4条对称轴,然后涂五角星进行评价。(折长方形、圆方法同上)

得出长方形只有两条对称轴,圆有无数条对称轴。

小结:通过刚才我们动手折一折,画一画,我们知道原来不同的对称图形,对称轴的条数也不同,有的只有1条,有的有两条,有的甚至有无数条。

六、创造对称图形

师:大家已经认识了对称图形,知道了对称轴,也体会了生活中对称图形的美,现在想不想动手来创造一些对称图形呢?请大家拿出老师发给你的彩色纸请小组讨论一下用什么方法来剪,剪出的肯定是对称图形。(小组讨论后汇报)教师指出:大家剪的过程中如果有什么困难可以向其他同学请教。剪完后,可以把自己的作品贴在黑板上。(学生剪,并在黑板上贴出)

七、小结

1、今天这节课你学得开心吗?为什么?

2、如果用笑脸来评价自己的话,你认为今天你可以得到几张笑脸?为什么?

3、想不想知道老师今天对大家这节课表现的评价?我认为今天大家表现都很棒,所以老师送给你们5张笑脸。(出示课件)

4、你们再仔细瞧瞧,其实这5张笑脸组成的一个图形也是对称图形,它的对称轴在哪呢?(学生争论后课件出示对称轴)那如果有10张笑脸呢?(学生课后讨论)

北师大版数学教案篇6

一、教学内容

人教版教材六年级下册19——20页例5例6及相关的练习题。

二、教学目标:

1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历“类比猜想——验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积。并会解决一些简单的实际问题。

3、注意渗透类比、转化思想。

三、教学重点:

理解、掌握圆柱体积计算的公式,能运用公式正确地计算圆柱的体积。

四、教学难点

推导圆柱的体积计算公式。

五、教法要素:

1、已有的知识和经验:体积、体积单位,学习长方体正方体的体积公式的经验。

2、原型:圆柱模型。

3、探究的问题:

(1)圆柱的体积和什么有关?圆柱能否转化成已学过的立体图形来计算体积?

(2)把圆柱拼成一个近似的长方体后,长方体的长、宽、高是圆柱的哪个部分?

(3)怎样计算圆柱的体积?

六、教学过程:

(一)唤起与生成。

1、什么叫物体的体积?我们学过哪些立体图形的体积计算?

2、长方体和正方体的体积怎样计算?它们可以用一个公式表示出来吗?

切入教学:怎样计算圆柱的体积?圆柱的体积计算会和什么有关?

(二)探究与解决。

探究:圆柱的.体积

1、 提出问题,启发思考:如何计算圆柱的体积?

2、 类比猜测,提出假设:结合长方体和正方体体积计算的知识,即长方

体和正方体的体积都等于底面积×高,据此分析并猜测圆柱的体积与谁有关,有什么关系;提出假设,圆柱的体积可能等于底面积×高。

3、 转化物体,分析推理:

怎样来验证我们的猜想?我们在学圆的面积时是把圆平均分成若干份,然后拼成一个近似的长方形,推导出圆的面积计算公式。我们能不能也把圆柱转化为我们学过的立体图形呢?应该怎样转化?结合圆的面积计算小组讨论。学生汇报交流。

(拿出平均分好的圆柱模型,圆柱的底面用一种颜色,圆柱的侧面用另一种颜色,以便学生观察。)现在利用这个圆柱模型小组合作把它转化为我们学过的立体图形。学生在小组合作后汇报交流。

4、全班交流,公式归纳:

交流时,要学生说明拼成的长方体与原来的圆柱有什么关系?圆柱的底面积和拼成的长方体的底面积有什么关系?拼成的长方体的高和圆柱的高有什么关系?引导学生推导出圆柱的体积计算方法。圆柱的体积=底面积×高。(在这一过程中,使学生认识到:把圆柱平均分成若干份切开,可以拼成近似的长方体,这样“化曲为直”,圆柱的体积就转化为长方体的体积,分的份数越多,拼起来就越接近长方体,渗透“极限”思想。)教师板书计算公式,并用字母表示。

回想一下,刚才我们是怎样推导出圆柱的体积计算公式的?

5、举一反三,应用规律:

(1)你能用这个公式解决实际问题吗?20页做一做,学生独立完成,全班订正。

如果我们只知道圆柱的半径和高,你能不能求出圆柱的体积?引导学生推导出v=∏r2h

(2)教学例6

学生审题之后,引导学生思考:解决这个问题就是要计算什么?然后指出求杯子的容积就是求这个圆柱形杯子可容纳东西的体积,计算方法跟圆柱体积的计算方法一样,再让学生独立解决。反馈时,要引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。

(三)训练与强化。

1、基本练习。

练习三第1题,学生独立完成,这两个都可以直接用v=sh来计算。全班订正,注意培养学生良好的计算习惯。

2、变式练习。

第2题,这题中给的条件不同,不管是知道半径还是直径,我们都要先求出底面积,再求体积。学生独立完成,在交流时,注意计算方法的指导。

第3题。求装多少水,实际是求这个水桶的容积。学生独立完成,全班交流。水是液体,单位应用毫升或升。

3、综合练习。

第5题。这题中知道了圆柱的体积和底面积求高,引导学生推出h=v÷s,如果有困难,也可列方程解答。学生独立完成,有困难的小组交流。

4、提高性练习。22页第10题,学生先小组讨论,再全班交流。

(四)总结与提高。

这节课我们是怎样推导出圆柱体积的计算方法的?圆柱和长方体、正方体在形体上有什么相同的地方?像这样上下两个底面一样,粗细不变的立体图形叫做直柱体,直柱体的体积都可以用底面积×高计算。出示几个直柱体(例:三棱柱、钢管等),让学生计算出他们的体积。

北师大版数学教案优质6篇相关文章:

人教版数学八上工作计划通用8篇

人教版六年级数学工作总结7篇

文艺版工作总结6篇

网页版合同精选6篇

故事版演讲稿6篇

初一人教版教学工作计划6篇

京剧版的作文通用6篇

故事版演讲稿推荐6篇

人教版二年级工作总结6篇

人教版英语七上工作计划6篇

北师大版数学教案优质6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
81637